Send to

Choose Destination
See comment in PubMed Commons below
Atherosclerosis. 2012 Nov;225(1):115-20. doi: 10.1016/j.atherosclerosis.2012.08.040. Epub 2012 Sep 13.

HDL2 interferes with LDL association with arterial proteoglycans: a possible athero-protective effect.

Author information

  • 1AstraZeneca Cardiovascular Bioscience, Mölndal S-431 83, Sweden.



High levels of large HDL (HDL2) reduce cardiovascular disease risks apparently because it mediates reverse cholesterol transport, and it has anti-inflammatory properties. Here we explored the mechanism behind an additional athero-protective HDL effect related to its capacity to interfere with formation of insoluble LDL-proteoglycans associations, a key step in LDL entrapment in the intima and in atherogenesis.


We found that HDL2 levels from type 2 diabetes patients and controls are inversely correlated with complex formation between serum LDL and the arterial proteoglycans versican. Reconstitution experiments indicate that HDL2 was more efficacious inhibitor of the LDL-versican association than the smaller HDL3. This may explain why serum from patients with dyslipidemia of insulin resistance, with low levels of HDL2, have a higher capacity to form insoluble LDL-proteoglycan complex. ApoE enrichment of HDL2 and HDL3 or addition of copies of an apoE peptide with the proteoglycan-binding sequence of this apolipoprotein increased their inhibition of LDL-versican associations.


The inhibitory effect of HDL2 and HDL3 on LDL-versican associations was related to formation of apoE-mediated soluble HDL-versican complexes. We speculate that in the intima large, HDL2 subclasses, by forming reversible soluble associations with proteoglycans can compete with formation of irreversible LDL-proteoglycan aggregates. This can contribute to the HDL2 athero-protective effects. In the dyslipidemia of insulin resistance, associated with low levels of HDL2, this athero-protective property may be compromised.

Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk