Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci Res. 2013 Jan;91(1):83-94. doi: 10.1002/jnr.23126. Epub 2012 Sep 20.

β-Amyloid induced effects on cholinergic, serotonergic, and dopaminergic neurons is differentially counteracted by anti-inflammatory drugs.

Author information

  • 1Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Innsbruck Medical University, Innsbruck, Austria.

Abstract

β-Amyloid (Aβ) is a small peptide that plays a potent role in synaptic plasticity as well as forms amyloid plaques in Alzheimer's disease (AD). Recent studies suggest that Aβ deposition is deleterious not only in AD, but also in Parkinson's disease (PD) and depression. This Aβ effect is associated with inflammatory processes. However, further evaluation is needed to understand how Aβ and inflammation interact and contribute to the regulation of the cholinergic, serotonergic, and dopaminergic neuronal populations. The aim of the present study was to investigate the effects of Aβ(1-42) on cholinergic neurons of the nucleus basalis of Meynert (which degenerate in AD), on serotonergic neurons of the dorsal raphe nucleus (which play a role in depression), and on dopaminergic neurons of the ventral mesencephalon (which degenerate in PD) in rat organotypic brain slices. Furthermore, we investigated whether anti-inflammatory drugs (celecoxib, citalopram, cyclooxygenase-2 inhibitor, ibuprofen, indomethacin, piclamilast) modulate or counteract Aβ-induced effects. Two-week-old organotypic brain slices of the nucleus basalis of Meynert, dorsal raphe nucleus, and ventral mesencephalon were incubated with 50 ng/ml Aβ(1-42) with or without anti-inflammatory agents for 3 days. Our results reveal that Aβ significantly decreased the number of choline acetyltransferase-positive cholinergic, tryptophan hydroxylase-positive serotonergic, and tyrosine hydroxylase-positive dopaminergic neurons and that anti-inflammatory drugs partially counteracted the Aβ-induced neuronal decline. This decline was not due to apoptotic processes (as evaluated by TUNEL, propidium iodide, caspase), oxidative stress (as measured by nitrite, catalase, or superoxide dismutase-2), or inflammation, but was most likely caused by a downregulation of these key enzymes.

Copyright © 2012 Wiley Periodicals, Inc.

PMID:
22996751
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk