Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell. 2012 Oct 26;48(2):298-312. doi: 10.1016/j.molcel.2012.08.011. Epub 2012 Sep 13.

LAT-independent Erk activation via Bam32-PLC-γ1-Pak1 complexes: GTPase-independent Pak1 activation.

Author information

  • 1Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.


In T cells, the adaptor Bam32 is coupled to Erk activation downstream of the TCR by an unknown mechanism. We characterized in Jurkat cells and primary T lymphocytes a pathway dependent on Bam32-PLC-γ1-Pak1 complexes, in which Pak1 kinase activates Raf-1 and Mek-1, both upstream of Erk. In the Bam32-PLC-γ1-Pak1 complex, catalytically inactive PLC-γ1 is used as a scaffold linking Bam32 to Pak1. PLC-γ1(C-SH2) directly binds S141 of Bam32, preventing LAT-mediated activation of Ras by PLC-γ1. The Bam32-PLC-γ1 interaction enhances the binding of the SH3 domain of the phospholipase with Pak1. The PLC-γ1(SH3)-Pak1 interaction activates Pak1 independently of the small GTPases Rac1/Cdc42, previously described as being the only activators of Pak1 in T cells. Direct binding of the SH3 domain of PLC-γ1 to Pak1 dissociates inactive Pak1 homodimers, a mechanism required for Pak1 activation. We have thus uncovered a LAT/Ras-independent, Bam32-nucleated pathway that activates Erk signaling in T cells.

Copyright © 2012 Elsevier Inc. All rights reserved.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk