Format

Send to:

Choose Destination
See comment in PubMed Commons below
Acta Biomater. 2013 Jan;9(1):4609-17. doi: 10.1016/j.actbio.2012.08.044. Epub 2012 Sep 8.

Self-assembled octapeptide scaffolds for in vitro chondrocyte culture.

Author information

  • 1School of Materials, The University of Manchester, Manchester, UK. mujeebayeesha@gmail.com

Abstract

Nature has evolved a variety of creative approaches to many aspects of materials synthesis and microstructural control. Molecular self-assembly is a simple and efficient way to fabricate complex nanostructures such as hydrogels. We have recently investigated the gelation properties of a series of ionic-complementary peptides based on the alternation of non-polar hydrophobic and polar hydrophilic residues. In this work we focus on one specific octapeptide, FEFEFKFK (F, phenylalanine; E, glutamic acid; K, lysine). This peptide was shown to self-assemble in solution and form β-sheet-rich nanofibres which, above a critical gelation concentration, entangle to form a self-supporting hydrogel. The fibre morphology of the hydrogel was analysed using transmission electron microscopy and cryo-scanning electron microscopy illustrating a dense fibrillar network of nanometer size fibres. Oscillatory rheology results show that the hydrogel possesses visco-elastic properties. Bovine chondrocytes were used to assess the biocompatibility of the scaffolds over 21 days under two-dimensional (2-D) and three-dimensional (3-D) cell culture conditions, particularly looking at cell morphology, proliferation and matrix deposition. 2-D culture resulted in cell viability and collagen type I deposition. In 3-D culture the mechanically stable gel was shown to support the viability of cells, the retention of cell morphology and collagen type II deposition. Subsequently the scaffold may serve as a template for cartilage tissue engineering.

Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

PMID:
22963851
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk