Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Osteoarthritis Cartilage. 2012 Dec;20(12):1638-46. doi: 10.1016/j.joca.2012.08.024. Epub 2012 Sep 1.

Expression of microRNAs during chondrogenesis of human adipose-derived stem cells.

Author information

  • 1Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.



MicroRNAs (miRNAs) play an important role in the regulation of chondrogenesis of mesenchymal stem cells, but their expression still remains unknown in human adipose-derived stem cells (hADSCs). In this study the miRNA expression profile during chondrogenic differentiation of hADSC and the potential mechanism whereby miRNAs may affect the process of chondrogenesis are considered.


hADSCs were isolated and cultured. The expression of chondrogenic proteins was detected using enzyme-linked immunosorbent assay (ELISA). miRNA expression profiles before and after chondrogenic induction were obtained using miRNA microarray essay and differently expressed miRNAs were primarily verified using quantitative real-time polymerase chain reaction (qRT-PCR). Putative targets of the miRNAs were predicted using online software programs MiRanda, TargetScan and miRBase.


Twelve miRNAs were found to be differentially expressed pre- and post-chondrogenic induction by over a two-fold change, including eight up-regulated miRNAs (miR-193b, miR-199a-3p/hsa-miR-199b-3p, miR-455-3p, miR-210, miR-381, miR-92a, miR-320c, and miR-136), and four down-regulated miRNAs (miR-490-5p, miR-4287, miR-BART8*, and miR-US25-1*). qRT-PCR analysis further confirmed these results. Predicted target genes of the differentially expressed miRNAs were based on the overlap of at least two online prediction algorithms, with the known functions of regulating chondrogenic differentiation, self-renewal, signal transduction and cell cycle control.


In this study we have identified a group of miRNAs and their target genes, which may play important roles in regulating chondrogenic differentiation of hADSCs. Our results provide the basis for further investigation into the molecular mechanism of chondrogenesis in hADSCs and their differentiation for cartilage engineering.

Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk