Send to

Choose Destination
See comment in PubMed Commons below
Nat Commun. 2012;3:1022. doi: 10.1038/ncomms2026.

Controlled rotation of the F₁-ATPase reveals differential and continuous binding changes for ATP synthesis.

Author information

  • 1Department of Physics, Faculty of Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan.


F(1)-ATPase is an ATP-driven rotary molecular motor that synthesizes ATP when rotated in reverse. To elucidate the mechanism of ATP synthesis, we imaged binding and release of fluorescently labelled ADP and ATP while rotating the motor in either direction by magnets. Here we report the binding and release rates for each of the three catalytic sites for 360° of the rotary angle. We show that the rates do not significantly depend on the rotary direction, indicating ATP synthesis by direct reversal of the hydrolysis-driven rotation. ADP and ATP are discriminated in angle-dependent binding, but not in release. Phosphate blocks ATP binding at angles where ADP binding is essential for ATP synthesis. In synthesis rotation, the affinity for ADP increases by >10(4), followed by a shift to high ATP affinity, and finally the affinity for ATP decreases by >10(4). All these angular changes are gradual, implicating tight coupling between the rotor angle and site affinities.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk