Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Ann Neurol. 2012 Aug;72(2):175-83. doi: 10.1002/ana.23666.

Familial cortical myoclonus with a mutation in NOL3.

Author information

  • 1Department of Neurology, School of Medicine, University of California at San Francisco, San Francisco, CA 94158, USA.

Abstract

OBJECTIVE:

Myoclonus is characterized by sudden, brief involuntary movements, and its presence is debilitating. We identified a family suffering from adult onset, cortical myoclonus without associated seizures. We performed clinical, electrophysiological, and genetic studies to define this phenotype.

METHODS:

A large, 4-generation family with a history of myoclonus underwent careful questioning, examination, and electrophysiological testing. Thirty-five family members donated blood samples for genetic analysis, which included single nucleotide polymorphism mapping, microsatellite linkage, targeted massively parallel sequencing, and Sanger sequencing. In silico and in vitro experiments were performed to investigate functional significance of the mutation.

RESULTS:

We identified 11 members of a Canadian Mennonite family suffering from adult onset, slowly progressive, disabling, multifocal myoclonus. Somatosensory evoked potentials indicated a cortical origin of the myoclonus. There were no associated seizures. Some severely affected individuals developed signs of progressive cerebellar ataxia of variable severity late in the course of their illness. The phenotype was inherited in an autosomal dominant fashion. We demonstrated linkage to chromosome 16q21-22.1. We then sequenced all coding sequence in the critical region, identifying only a single cosegregating, novel, nonsynonymous mutation, which resides in the gene NOL3. Furthermore, this mutation was found to alter post-translational modification of NOL3 protein in vitro.

INTERPRETATION:

We propose that familial cortical myoclonus is a novel movement disorder that may be caused by mutation in NOL3. Further investigation of the role of NOL3 in neuronal physiology may shed light on neuronal membrane hyperexcitability and pathophysiology of myoclonus and related disorders.

Copyright © 2012 American Neurological Association.

PMID:
22926851
[PubMed - indexed for MEDLINE]
PMCID:
PMC3431191
Free PMC Article

Images from this publication.See all images (3)Free text

Figure 1
Figure 2
Figure 3
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc. Icon for PubMed Central
    Loading ...
    Write to the Help Desk