Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Appl Bacteriol. 1990 Oct;69(4):578-84.

Chemical reactivity of some isothiazolone biocides.

Author information

  • 1Department of Pharmacy, University of Manchester, UK.

Abstract

Chemical reactions between the isothiazolone biocides, N-methylisothiazol-3-one (MIT), benzisothiazol-3-one (BIT) and 5-chloro-N-methylisothiazol-3-one (CMIT) with cysteine have been investigated by u.v. and NMR spectroscopy. At physiological pH all three agents interacted oxidatively with thiols to form disulphides. Further interaction with thiols caused the release of cystine and formation of a reduced, ring-opened form of the biocide (mercaptoacrylamide). In an analogous fashion to the initial reaction the mercaptoacrylamide reacted with another molecule of biocide to give biocide dimers. NMR spectral studies indicated that for CMIT the mercaptoacrylamide form is capable of tautomerization to a highly reactive thio-acyl chloride. Formation of mercaptoacrylamide was in all cases highly pH-dependent. Alcohol dehydrogenase was insensitive to all three agents but was highly sensitive to CMIT when co-administered with dithiothreitol. Capacity to form a thioacyl chloride from the mercaptoacrylamide is suggested to account for much of this enhanced activity. Stopped-flow spectroscopic studies showed rates of reaction with glutathione (GSH) to directly parallel antimicrobial activity. Additionally, CMIT was able to react directly with both ionization states of GSH (pH 7-10) whilst BIT and MIT appeared only to interact when the glutamyl-nitrogen of GSH was charged (pH 8.5).

PMID:
2292521
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk