Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Front Cell Infect Microbiol. 2012 Apr 11;2:51. doi: 10.3389/fcimb.2012.00051. eCollection 2012.

Insights on the trafficking and retro-translocation of glycosphingolipid-binding bacterial toxins.

Author information

  • 1Division of Gastroenterology and Nutrition, Department of Medicine, Children's Hospital Boston, Boston MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.

Abstract

Some bacterial toxins and viruses have evolved the capacity to bind mammalian glycosphingolipids to gain access to the cell interior, where they can co-opt the endogenous mechanisms of cellular trafficking and protein translocation machinery to cause toxicity. Cholera toxin (CT) is one of the best-studied examples, and is the virulence factor responsible for massive secretory diarrhea seen in cholera. CT enters host cells by binding to monosialotetrahexosylganglioside (GM1 gangliosides) at the plasma membrane where it is transported retrograde through the trans-Golgi network (TGN) into the endoplasmic reticulum (ER). In the ER, a portion of CT, the CT-A1 polypeptide, is unfolded and then "retro-translocated" to the cytosol by hijacking components of the ER associated degradation pathway (ERAD) for misfolded proteins. CT-A1 rapidly refolds in the cytosol, thus avoiding degradation by the proteasome and inducing toxicity. Here, we highlight recent advances in our understanding of how the bacterial AB(5) toxins induce disease. We highlight the molecular mechanisms by which these toxins use glycosphingolipid to traffic within cells, with special attention to how the cell senses and sorts the lipid receptors. We also discuss several new studies that address the mechanisms of toxin unfolding in the ER and the mechanisms of CT A1-chain retro-translocation to the cytosol.

KEYWORDS:

ERAD; cholera toxin; membrane trafficking; retro-translocation

PMID:
22919642
[PubMed - indexed for MEDLINE]
PMCID:
PMC3417474
Free PMC Article

Images from this publication.See all images (1)Free text

Figure 1
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk