Format

Send to:

Choose Destination
See comment in PubMed Commons below
Curr Biol. 2012 Sep 25;22(18):1681-7. doi: 10.1016/j.cub.2012.06.068. Epub 2012 Aug 16.

Estimating the microtubule GTP cap size in vivo.

Author information

  • 1Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.

Abstract

Microtubules (MTs) polymerize via net addition of GTP-tubulin subunits to the MT plus end, which subsequently hydrolyze to GDP-tubulin in the MT lattice. Relatively stable GTP-tubulin subunits create a "GTP cap" at the growing MT plus end that suppresses catastrophe. To understand MT assembly regulation, we need to understand GTP hydrolysis reaction kinetics and the GTP cap size. In vitro, the GTP cap has been estimated to be as small as one layer (13 subunits) or as large as 100-200 subunits. GTP cap size estimates in vivo have not yet been reported. Using EB1-EGFP as a marker for GTP-tubulin in epithelial cells, we find on average (1) 270 EB1 dimers bound to growing MT plus ends, and (2) a GTP cap size of ∼750 tubulin subunits. Thus, in vivo, the GTP cap is far larger than previous estimates in vitro, and ∼60-fold larger than a single layer cap. We also find that the tail of a large GTP cap promotes MT rescue and suppresses shortening. We speculate that a large GTP cap provides a locally concentrated scaffold for tip-tracking proteins and confers persistence to assembly in the face of physical barriers such as the cell cortex.

Copyright © 2012 Elsevier Ltd. All rights reserved.

Comment in

PMID:
22902755
[PubMed - indexed for MEDLINE]
PMCID:
PMC3461128
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk