Send to:

Choose Destination
See comment in PubMed Commons below
J Exp Biol. 2012 Nov 15;215(Pt 22):3895-904. doi: 10.1242/jeb.068908. Epub 2012 Aug 16.

Experimental selection for body size at age modifies early life-history traits and muscle gene expression in adult zebrafish.

Author information

  • 1Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK.


The short generation time of the zebrafish (Danio rerio) was exploited to investigate the effects of selection for body size at age on early life-history traits and on the transcriptional response to a growth stimulus in skeletal muscle of adult fish. Replicate populations were either unselected (U-lineage) or subjected to four generations of experimental selection for small (S-lineage) or large (L-lineage) body size at 90 days post-fertilization. Body mass was on average 16.3% and 41.0% higher in the L- than in the U- and S-lineages, respectively. Egg diameter was 6.4% lower with 13% less yolk in the S-lineage compared with the other lineages. Maternal transcripts for igf2r, bmpr1aa, igf1ar, igf2a, igfbp5a, ghra and igfbp3 in 2-4 cell stage embryos were higher in the L- than in the S-lineage. Larvae from the L-lineage were significantly larger, but survivorship at the end of the first month was similar between lineages. Gene expression was measured in the fast muscle of adult fish fasted for 7 days and then re-fed to satiation for 48 h. The expression of 11 insulin-like growth factor pathway genes and 12 other nutritionally responsive genes was similar for the S- and L-lineages as was gut fullness with feeding. Transcript abundance for four genes (igf1a, igf2r, igfbp1a and igfbp1b) showed either regulated or constitutive differences between the S- and L-lineages. For example, igf2 receptor transcript abundance was higher and igbp1a/b transcript abundance was lower in the L- than in the S-lineage, consistent with an effect of selection on insulin-like growth factor signalling.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk