Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cytokine. 2012 Nov;60(2):565-74. doi: 10.1016/j.cyto.2012.07.024. Epub 2012 Aug 13.

Interleukin-1β is internalised by viable Aggregatibacter actinomycetemcomitans biofilm and locates to the outer edges of nucleoids.

Author information

  • 1Department of Biochemistry and Food Chemistry, University of Turku, FI-20014 Turku, Finland.

Abstract

The opportunistic pathogen Aggregatibacter actinomycetemcomitans causes periodontitis, which is a biofilm infection that destroys tooth-supportive tissues. Interleukin (IL)-1β, a central proinflammatory cytokine of periodontitis, is an essential first line cytokine for local inflammation that modulates the cell proliferation and anti-pathogen response of human gingival keratinocytes. Previously, we demonstrated that A. actinomycetemcomitans biofilms bind IL-1β; however, whether this binding is an active process is not known. In this study, we showed for the first time with immuno-electron microscopy that viable bacterial biofilm cells internalised IL-1β when co-cultured with an organotypic mucosa. Decreased biofilm viability hindered the ability of biofilm to sequester IL-1β and caused IL-1β leakage into the culture medium. In some A. actinomycetemcomitans cells, intracellular IL-1β localized to the outer edges of the nucleoids. We identified the DNA-binding protein HU as an IL-1β interacting protein with mass spectroscopy and showed the interaction of recombinant HU and IL-1βin vitro using enzyme-linked immunosorbent assay (ELISA). Close contact with a viable A. actinomycetemcomitans biofilm decreased the proliferation and apoptosis of human gingival keratinocytes as demonstrated using Ki-67 and the terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) staining, respectively. Our results suggest that viable A. actinomycetemcomitans biofilms may disturb the critical first steps of local inflammation in periodontitis by binding and internalising IL-1β. The interaction of IL-1β with conserved HU provides a potential mechanism for shaping bacterial gene expression.

Copyright © 2012 Elsevier Ltd. All rights reserved.

PMID:
22898394
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk