Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Neurosci. 2012 Aug 15;32(33):11330-42.

Microglial cathepsin B contributes to the initiation of peripheral inflammation-induced chronic pain.

Author information

  • 1Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka 812-8582, Japan.

Abstract

Interleukin (IL)-1β and IL-18 play critical roles in the induction of chronic pain hypersensitivity. Their inactive forms are activated by caspase-1. However, little is known about the mechanism underlying the activation of pro-caspase-1. There is increasing evidence that cathepsin B (CatB), a typical lysosomal cysteine protease, is involved in the pro-caspase-1 activation and the subsequent maturation of IL-1β and IL-18. In this context, CatB is considered to be an important molecular target to control chronic pain. However, no information is currently available about the role of CatB in chronic pain hypersensitivity. We herein show that CatB deficiency or the intrathecal administration of CA-074Me, a specific CatB inhibitor, significantly inhibited the induction of complete Freund's adjuvant-induced tactile allodynia in mice without affecting peripheral inflammation. In contrast, CatB deficiency did not affect the nerve injury-induced tactile allodynia. Furthermore, CatB deficiency or CA-074Me treatment significantly inhibited the maturation and secretion of IL-1β and IL-18 by cultured microglia following treatment with the neuroactive glycoprotein chromogranin A (CGA), but not with ATP. Moreover, the IL-1β expression in spinal microglia and the induction of tactile allodynia following the intrathecal administration of CGA depended on CatB, whereas those induced by the intrathecal administration of ATP or lysophosphatidic acid were CatB independent. These results strongly suggest that CatB is an essential enzyme for the induction of chronic inflammatory pain through its activation of pro-caspase-1, which subsequently induces the maturation and secretion of IL-1β and IL-18 by spinal microglia. Therefore, CatB-specific inhibitors may represent a useful new strategy for treating inflammation-associated pain.

PMID:
22895716
[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances

Publication Types

MeSH Terms

Substances

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk