Format

Send to:

Choose Destination
See comment in PubMed Commons below
Histochem Cell Biol. 2013 Jan;139(1):181-93. doi: 10.1007/s00418-012-1015-3. Epub 2012 Aug 15.

Label-free detection of peripheral nerve tissues against adjacent tissues by spontaneous Raman microspectroscopy.

Author information

  • 1Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.

Abstract

Detection of peripheral nerve tissues during surgery is required to avoid neural disturbance following surgery as an aspect of realizing better functional outcome. We provide a proof-of-principle demonstration of a label-free detection technique of peripheral nerve tissues, including myelinated and unmyelinated nerves, against adjacent tissues that employ spontaneous Raman microspectroscopy. To investigate the Raman spectral features of peripheral nerves in detail, we used unfixed sectioned samples. Raman spectra of myelinated nerve, unmyelinated nerve, fibrous connective tissue, skeletal muscle, tunica media of blood vessel, and adipose tissue of Wistar rats were analyzed, and Raman images of the tissue distribution were constructed using the map of the ordinary least squares regression (OLSR) estimates. We found that nerve tissues exhibited a specific Raman spectrum arising from axon or myelin sheath, and that the nerve tissues can be selectively detected against the other tissues. Moreover, myelinated and unmyelinated nerves can be distinguished by the intensity differences of 2,855 cm⁻¹, and 2,945 cm⁻¹, which are mainly derived from lipid and protein contents of nerve fibers. We applied this method to unfixed section samples of human periprostatic tissues excised from prostatic cancer patients. Myelinated nerves, unmyelinated nerves, fibrous connective tissues, and adipose tissues of the periprostatic tissues were separately detected by OLSR analysis. These results suggest the potential of the Raman spectroscopic observation for noninvasive and label-free nerve detection, and we expect this method could be a key technique for nerve-sparing surgery.

PMID:
22892663
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk