Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Stem Cells. 2012 Oct;30(10):2212-20. doi: 10.1002/stem.1181.

Activation of Notch signaling during ex vivo expansion maintains donor muscle cell engraftment.

Author information

  • 1Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA. mparker@fhcrc.org

Abstract

Transplantation of myogenic stem cells possesses great potential for long-term repair of dystrophic muscle. However, a single donor muscle biopsy is unlikely to provide enough cells to effectively transplant the muscle mass of a patient affected by muscular dystrophy. Expansion of cells ex vivo using traditional culture techniques significantly reduces engraftment potential. We hypothesized that activation of Notch signaling during ex vivo expansion would maintain donor cell engraftment potential. In this study, we expanded freshly isolated canine muscle-derived cells on tissue culture plates coated with Delta-1(ext) -IgG to activate Notch signaling or with human IgG as a control. A model of canine-to-murine xenotransplantation was used to quantitatively compare canine muscle cell engraftment and determine whether engrafted donor cells could function as satellite cells in vivo. We show that Delta-1(ext) -IgG inhibited differentiation of canine muscle-derived cells and increased the level of genes normally expressed in myogenic precursors. Moreover, cells expanded on Delta-1(ext) -IgG resulted in a significant increase in the number of donor-derived fibers, as compared to cells expanded on human IgG, reaching engraftment levels similar to freshly isolated cells. Importantly, cells expanded on Delta-1(ext) -IgG engrafted to the recipient satellite cell niche and contributed to further regeneration. A similar strategy of expanding human muscle-derived cells on Notch ligand might facilitate engraftment and muscle regeneration for patients affected with muscular dystrophy.

Copyright © 2012 AlphaMed Press.

PMID:
22865615
[PubMed - indexed for MEDLINE]
PMCID:
PMC3448880
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for John Wiley & Sons, Inc. Icon for PubMed Central
    Loading ...
    Write to the Help Desk