Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Cardiovasc Res. 2012 Nov 1;96(2):244-54. doi: 10.1093/cvr/cvs248. Epub 2012 Jul 30.

Chronic potentiation of cardiac L-type Ca(2+) channels by pirfenidone.

Author information

  • 1Department of Biochemistry, Cinvestav-IPN, AP 14-740, México City DF 07000, México.



On the basis of its ability to inhibit fibrosis, pirfenidone has drawn the attention as an intriguing candidate for treating cardiac disease. However, its precise electrophysiological effects have yet to be elucidated. Here, we have investigated its potential to modulate ion channels.


Adult rat cardiac myocytes were investigated using whole-cell patch-clamp, western-blot and qRT-PCR techniques. Pirfenidone increased the density of L-type Ca(2+) current (I(CaL,) 50-100%), without significantly altering Na(+), K(+), or T-type Ca(2+) currents. The effect was dose-dependent, with an EC(50) of 2.8 µM. Its onset was slow, with a lag period larger than 1 h and time to maximum of 24-48 h. Concomitant changes were observed in the voltage-dependent activation of I(CaL) (-5 mV shift in both V(1/2) and k). In contrast, the following properties of I(CaL) remained normal: steady-state inactivation, Ca(V)1.2 levels (mRNA and protein), and intramembrane charge movement. Indeed, the conductance-to-charge ratio, or G(max)/Q(max), was increased by 80%. The effect on I(CaL) was mimicked by an inhibitor of nitric oxide (NO) synthase (NOS), and attenuated by both cyclic adenosine monophosphate (cAMP) and cAMP-dependent protein kinase (PKA) inhibitors. Conversely, cytokines, reactive oxygen species, and Ca(2+) were all ruled out as possible intermediaries. Additional experiments suggest that pirfenidone increases action potential duration by ∼50%.


Pirfenidone augments I(CaL), not through higher expression of L-type channels, but through promoting their Ca(2+)-conducting activity. A possible inhibition of NOS expression is likely involved, with subsequent reduced NO production and stimulated cAMP/PKA signalling. These findings may be relevant to the cardioprotective effect of pirfenidone.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk