Functions of MgH2 in hydrogen storage reactions of the 6LiBH4-CaH2 reactive hydride composite

Dalton Trans. 2012 Aug 28;41(36):10980-7. doi: 10.1039/c2dt30945a.

Abstract

A significant improvement of hydrogen storage properties was achieved by introducing MgH(2) into the 6LiBH(4)-CaH(2) system. It was found that ~8.0 wt% of hydrogen could be reversibly stored in a 6LiBH(4)-CaH(2)-3MgH(2) composite below 400 °C and 100 bar of hydrogen pressure with a stepwise reaction, which is superior to the pristine 6LiBH(4)-CaH(2) and LiBH(4) samples. Upon dehydriding, MgH(2) first decomposed to convert to Mg and liberate hydrogen with an on-set temperature of ~290 °C. Subsequently, LiBH(4) reacted with CaH(2) to form CaB(6) and LiH in addition to further hydrogen release. Hydrogen desorption from the 6LiBH(4)-CaH(2)-3MgH(2) composite finished at ~430 °C in non-isothermal model, a 160 °C reduction relative to the 6LiBH(4)-CaH(2) sample. JMA analyses revealed that hydrogen desorption was a diffusion-controlled reaction rather than an interface reaction-controlled process. The newly produced Mg of the first-step dehydrogenation possibly acts as the heterogeneous nucleation center of the resultant products of the second-step dehydrogenation, which diminishes the energy barrier and facilitates nucleation and growth, consequently reducing the operating temperature and improving the kinetics of hydrogen storage.