Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Respir Crit Care Med. 2012 Oct 1;186(7):622-32. doi: 10.1164/rccm.201202-0366OC. Epub 2012 Jul 26.

Genome-wide association studies identify CHRNA5/3 and HTR4 in the development of airflow obstruction.

Author information

  • 1Division of Aging, Brigham and Women's Hospital and Harvard Medical School, 1620 Tremont Street, Boston, MA 02120, USA. jwilk@rics.bwh.harvard.edu

Abstract

RATIONALE:

Genome-wide association studies (GWAS) have identified loci influencing lung function, but fewer genes influencing chronic obstructive pulmonary disease (COPD) are known.

OBJECTIVES:

Perform meta-analyses of GWAS for airflow obstruction, a key pathophysiologic characteristic of COPD assessed by spirometry, in population-based cohorts examining all participants, ever smokers, never smokers, asthma-free participants, and more severe cases.

METHODS:

Fifteen cohorts were studied for discovery (3,368 affected; 29,507 unaffected), and a population-based family study and a meta-analysis of case-control studies were used for replication and regional follow-up (3,837 cases; 4,479 control subjects). Airflow obstruction was defined as FEV(1) and its ratio to FVC (FEV(1)/FVC) both less than their respective lower limits of normal as determined by published reference equations.

MEASUREMENTS AND MAIN RESULTS:

The discovery meta-analyses identified one region on chromosome 15q25.1 meeting genome-wide significance in ever smokers that includes AGPHD1, IREB2, and CHRNA5/CHRNA3 genes. The region was also modestly associated among never smokers. Gene expression studies confirmed the presence of CHRNA5/3 in lung, airway smooth muscle, and bronchial epithelial cells. A single-nucleotide polymorphism in HTR4, a gene previously related to FEV(1)/FVC, achieved genome-wide statistical significance in combined meta-analysis. Top single-nucleotide polymorphisms in ADAM19, RARB, PPAP2B, and ADAMTS19 were nominally replicated in the COPD meta-analysis.

CONCLUSIONS:

These results suggest an important role for the CHRNA5/3 region as a genetic risk factor for airflow obstruction that may be independent of smoking and implicate the HTR4 gene in the etiology of airflow obstruction.

PMID:
22837378
[PubMed - indexed for MEDLINE]
PMCID:
PMC3480517
Free PMC Article

Publication Types, MeSH Terms, Substances, Secondary Source ID, Grant Support

Publication Types

MeSH Terms

Substances

Secondary Source ID

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon Icon for PubMed Central
    Loading ...
    Write to the Help Desk