Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Blood. 2012 Sep 6;120(10):2087-97. doi: 10.1182/blood-2012-01-404509. Epub 2012 Jul 24.

Mechanisms of resistance to high and low linear energy transfer radiation in myeloid leukemia cells.

Author information

  • 1Molecular Pharmacology and Chemistry Program and Leukemia Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.

Abstract

Low linear energy transfer (LET) ionizing radiation (IR) is an important form of therapy for acute leukemias administered externally or as radioimmunotherapy. IR is also a potential source of DNA damage. High LET IR produces structurally different forms of DNA damage and has emerged as potential treatment of metastatic and hematopoietic malignancies. Therefore, understanding mechanisms of resistance is valuable. We created stable myeloid leukemia HL60 cell clones radioresistant to either γ-rays or α-particles to understand possible mechanisms in radioresistance. Cross-resistance to each type of IR was observed, but resistance to clustered, complex α-particle damage was substantially lower than to equivalent doses of γ-rays. The resistant phenotype was driven by changes in: apoptosis; late G2/M checkpoint accumulation that was indicative of increased genomic instability; stronger dependence on homology-directed repair; and more robust repair of DNA double-strand breaks and sublethal-type damage induced by γ-rays, but not by α-particles. The more potent cytotoxicity of α-particles warrants their continued investigation as therapies for leukemia and other cancers.

PMID:
22829630
[PubMed - indexed for MEDLINE]
PMCID:
PMC3437596
Free PMC Article

Images from this publication.See all images (7)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk