Send to

Choose Destination
See comment in PubMed Commons below
Int J Neuropsychopharmacol. 2013 May;16(4):849-56. doi: 10.1017/S1461145712000673. Epub 2012 Jul 25.

The opioid placebo analgesia is mediated exclusively through μ-opioid receptor in rat.

Author information

  • 1Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China.


Placebo analgesia is one of the most robust and best-studied placebo effects. Recent researches suggest that placebo analgesia activated the μ-opioid receptor signalling in the human brain. However, whether other opioid receptors are involved in the placebo analgesia remains unclear. We have previously evoked placebo responses in mice (Guo et al. 2010, 2011) and these mice may serve as a model for investigating placebo analgesia. In the present study, we tried to explore the site of action and types of opioid receptors involved in placebo response. Male Sprague-Dawley rats were trained with 10 mg/kg morphine for 4 d to establish the placebo analgesia model. This placebo analgesia can be blocked by injection of 5 mg/kg dose naloxone or by microinjection with naloxone (1, 3 or 10 μg/rat) into rostral anterior cingulate cortex (rACC). Then, animals were tested after intra-rACC microinjection of D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2) (CTOP, a selective μ-opioid receptor antagonist) or naltrindole (NTI, a highly selective δ-opioid receptor antagonist) or nor-binaltorphimine (nor-BNI, a highly selective κ-opioid receptor antagonist). Our results showed that CTOP, but not NTI or nor-BNI, could reduce the pain threshold in placebo analgesia rats. It may be concluded that rACC is the key brain region involved in placebo analgesia and the opioid placebo analgesia is mediated exclusively through μ-opioid receptor in rat.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk