Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Differentiation. 2012 Sep;84(2):214-22. doi: 10.1016/j.diff.2012.07.002. Epub 2012 Jul 21.

Feline bone marrow-derived mesenchymal stromal cells (MSCs) show similar phenotype and functions with regards to neuronal differentiation as human MSCs.

Author information

  • 1Department of Medicine-Hematology-Oncology University of Medicine and Dentistry, New Jersey Medical School, Newark, NJ 07103, USA.

Abstract

Mesenchymal stromal cells (MSCs) show promise for treatment of a variety of neurological and other disorders. Cat has a high degree of linkage with the human genome and has been used as a model for analysis of neurological disorders such as stroke, Alzheimer's disease and motor disorders. The present study was designed to characterize bone marrow-derived MSCs from cats and to investigate the capacity to generate functional peptidergic neurons. MSCs were expanded with cells from the femurs of cats and then characterized by phenotype and function. Phenotypically, feline and human MSCs shared surface markers, and lacked hematopoietic markers, with similar morphology. As compared to a subset of human MSCs, feline MSCs showed no evidence of the major histocompatibility class II. Since the literature suggested Stro-1 as an indicator of pluripotency, we compared early and late passages feline MSCs and found its expression in >90% of the cells. However, the early passage cells showed two distinct populations of Stro-1-expressing cells. At passage 5, the MSCs were more homogeneous with regards to Stro-1 expression. The passage 5 MSCs differentiated to osteogenic and adipogenic cells, and generated neurons with electrophysiological properties. This correlated with the expression of mature neuronal markers with concomitant decrease in stem cell-associated genes. At day 12 induction, the cells were positive for MAP2, Neuronal Nuclei, tubulin βIII, Tau and synaptophysin. This correlated with electrophysiological maturity as presented by excitatory postsynaptic potentials (EPSPs). The findings indicate that the cat may constitute a promising biomedical model for evaluation of novel therapies such as stem cell therapy in such neurological disorders as Alzheimer's disease and stroke.

Copyright © 2012 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

PMID:
22824626
[PubMed - indexed for MEDLINE]
PMCID:
PMC3408766
Free PMC Article

Images from this publication.See all images (5)Free text

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk