Rapid climate change and the rate of adaptation: insight from experimental quantitative genetics

New Phytol. 2012 Sep;195(4):752-765. doi: 10.1111/j.1469-8137.2012.04230.x. Epub 2012 Jul 23.

Abstract

Evolution proceeds unceasingly in all biological populations. It is clear that climate-driven evolution has molded plants in deep time and within extant populations. However, it is less certain whether adaptive evolution can proceed sufficiently rapidly to maintain the fitness and demographic stability of populations subjected to exceptionally rapid contemporary climate change. Here, we consider this question, drawing on current evidence on the rate of plant range shifts and the potential for an adaptive evolutionary response. We emphasize advances in understanding based on theoretical studies that model interacting evolutionary processes, and we provide an overview of quantitative genetic approaches that can parameterize these models to provide more meaningful predictions of the dynamic interplay between genetics, demography and evolution. We outline further research that can clarify both the adaptive potential of plant populations as climate continues to change and the role played by ongoing adaptation in their persistence.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Adaptation, Physiological / genetics*
  • Biological Evolution
  • Climate Change*
  • Genetic Fitness
  • Genetic Variation
  • Plants / genetics*