Send to:

Choose Destination
See comment in PubMed Commons below
Exp Cell Res. 2012 Nov 1;318(18):2353-64. doi: 10.1016/j.yexcr.2012.07.007. Epub 2012 Jul 16.

The type of DUOX-dependent ROS production is dictated by defined sequences in DUOXA.

Author information

  • 1IRIBHM, Universit√© Libre de Bruxelles, Campus Erasme, 1070 Brussels, Belgium.


A deliberate generation of ROS is now recognized to be achieved by specific NADPH oxidases (NOX). Dual oxidases (DUOXs) are Ca(2+)-activated NOXs and operate as H(2)O(2)-generators in various tissues. A tight regulation is however required to avoid ROS overproduction that can rapidly be harmful to biological systems. DUOX activator (DUOXA) proteins act as organizing elements for surface expression and activity of the DUOX enzymes. To study DUOX activation by the maturation factors, chimeric DUOXA proteins were generated by replacing particular domains between DUOXA1 and DUOXA2. Their impact on DUOX function and membrane expression were explored in a reconstituted heterologous cell system composed of COS-7 cells. We have shown that the COOH-terminal end of DUOXA1 is responsible for DUOX1-dependent H(2)O(2) generation. The NH(2)-terminal tail of DUOXA2 is critical to specify the type of ROS released by DUOX2, hydrogen peroxide or superoxide. Native DUOXA2 would constrain DUOX2 to produce H(2)O(2). However, alterations of the DUOXA2 NH(2)-terminal domain modify DUOX2 activity triggering superoxide leaking. Our results demonstrate that specific domains of the DUOX maturation factors promote the activation of DUOXs as well as the type of ROS generated by the oxidases.

Copyright © 2012 Elsevier Inc. All rights reserved.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk