Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Mol Syst Biol. 2012 Jul 17;8:599. doi: 10.1038/msb.2012.31.

Deciphering a global network of functionally associated post-translational modifications.

Author information

  • 1Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

Abstract

Various post-translational modifications (PTMs) fine-tune the functions of almost all eukaryotic proteins, and co-regulation of different types of PTMs has been shown within and between a number of proteins. Aiming at a more global view of the interplay between PTM types, we collected modifications for 13 frequent PTM types in 8 eukaryotes, compared their speed of evolution and developed a method for measuring PTM co-evolution within proteins based on the co-occurrence of sites across eukaryotes. As many sites are still to be discovered, this is a considerable underestimate, yet, assuming that most co-evolving PTMs are functionally associated, we found that PTM types are vastly interconnected, forming a global network that comprise in human alone >50,000 residues in about 6000 proteins. We predict substantial PTM type interplay in secreted and membrane-associated proteins and in the context of particular protein domains and short-linear motifs. The global network of co-evolving PTM types implies a complex and intertwined post-translational regulation landscape that is likely to regulate multiple functional states of many if not all eukaryotic proteins.

Comment in

PMID:
22806145
[PubMed - indexed for MEDLINE]
PMCID:
PMC3421446
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1
Figure 2
Figure 3
Figure 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk