Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2012 Nov 1;63(2):858-73. doi: 10.1016/j.neuroimage.2012.07.012. Epub 2012 Jul 16.

Increasing power for voxel-wise genome-wide association studies: the random field theory, least square kernel machines and fast permutation procedures.

Author information

  • 1Centre for Computational Systems Biology and School of Mathematical Sciences, Fudan University, Shanghai, China.

Abstract

Imaging traits are thought to have more direct links to genetic variation than diagnostic measures based on cognitive or clinical assessments and provide a powerful substrate to examine the influence of genetics on human brains. Although imaging genetics has attracted growing attention and interest, most brain-wide genome-wide association studies focus on voxel-wise single-locus approaches, without taking advantage of the spatial information in images or combining the effect of multiple genetic variants. In this paper we present a fast implementation of voxel- and cluster-wise inferences based on the random field theory to fully use the spatial information in images. The approach is combined with a multi-locus model based on least square kernel machines to associate the joint effect of several single nucleotide polymorphisms (SNP) with imaging traits. A fast permutation procedure is also proposed which significantly reduces the number of permutations needed relative to the standard empirical method and provides accurate small p-value estimates based on parametric tail approximation. We explored the relation between 448,294 single nucleotide polymorphisms and 18,043 genes in 31,662 voxels of the entire brain across 740 elderly subjects from the Alzheimer's disease neuroimaging initiative (ADNI). Structural MRI scans were analyzed using tensor-based morphometry (TBM) to compute 3D maps of regional brain volume differences compared to an average template image based on healthy elderly subjects. We find method to be more sensitive compared with voxel-wise single-locus approaches. A number of genes were identified as having significant associations with volumetric changes. The most associated gene was GRIN2B, which encodes the N-methyl-d-aspartate (NMDA) glutamate receptor NR2B subunit and affects both the parietal and temporal lobes in human brains. Its role in Alzheimer's disease has been widely acknowledged and studied, suggesting the validity of the approach. The various advantages over existing approaches indicate a great potential offered by this novel framework to detect genetic influences on human brains.

Copyright © 2012 Elsevier Inc. All rights reserved.

PMID:
22800732
[PubMed - indexed for MEDLINE]
PMCID:
PMC3635688
Free PMC Article

Images from this publication.See all images (8)Free text

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk