Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Biol Chem. 2012 Sep 7;287(37):31406-13. doi: 10.1074/jbc.M112.352617. Epub 2012 Jul 9.

Specialized Hsp70 chaperone (HscA) binds preferentially to the disordered form, whereas J-protein (HscB) binds preferentially to the structured form of the iron-sulfur cluster scaffold protein (IscU).

Author information

  • 1Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA.

Abstract

The Escherichia coli protein IscU serves as the scaffold for Fe-S cluster assembly and the vehicle for Fe-S cluster transfer to acceptor proteins, such as apoferredoxin. IscU populates two conformational states in solution, a structured conformation (S) that resembles the conformation of the holoprotein IscU-[2Fe-2S] and a dynamically disordered conformation (D) that does not bind metal ions. NMR spectroscopic results presented here show that the specialized Hsp70 chaperone (HscA), alone or as the HscA-ADP complex, preferentially binds to and stabilizes the D-state of IscU. IscU is released when HscA binds ATP. By contrast, the J-protein HscB binds preferentially to the S-state of IscU. Consistent with these findings, we propose a mechanism in which cluster transfer is coupled to hydrolysis of ATP bound to HscA, conversion of IscU to the D-state, and release of HscB.

PMID:
22782893
[PubMed - indexed for MEDLINE]
PMCID:
PMC3438969
Free PMC Article

Images from this publication.See all images (6)Free text

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk