Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Lab Chip. 2012 Sep 21;12(18):3235-48. doi: 10.1039/c2lc40308k. Epub 2012 Jul 11.

Microsystems for biomimetic stimulation of cardiac cells.

Author information

  • 1Department of Mechanical Engineering, Stanford University, Stanford, California, USA.

Abstract

The heart is a complex integrated system that leverages mechanoelectrical signals to synchronize cardiomyocyte contraction and push blood throughout the body. The correct magnitude, timing, and distribution of these signals is critical for proper functioning of the heart; aberrant signals can lead to acute incidents, long-term pathologies, and even death. Due to the heart's limited regenerative capacity and the wide variety of pathologies, heart disease is often studied in vitro. However, it is difficult to accurately replicate the cardiac environment outside of the body. Studying the biophysiology of the heart in vitro typically consists of studying single cells in a tightly controlled static environment or whole tissues in a complex dynamic environment. Micro-electromechanical systems (MEMS) allow us to bridge these two extremes by providing increasing complexity for cell culture without having to use a whole tissue. Here, we carefully describe the electromechanical environment of the heart and discuss MEMS specifically designed to replicate these stimulation modes. Strengths, limitations and future directions of various designs are discussed for a variety of applications.

PMID:
22782590
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry
    Loading ...
    Write to the Help Desk