Send to:

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 2012 Jul 9;198(1):47-55. doi: 10.1083/jcb.201111088.

Myo1c facilitates G-actin transport to the leading edge of migrating endothelial cells.

Author information

  • 1Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.


Addition of actin monomer (G-actin) to growing actin filaments (F-actin) at the leading edge generates force for cell locomotion. The polymerization reaction and its regulation have been studied in depth. However, the mechanism responsible for transport of G-actin substrate to the cell front is largely unknown; random diffusion, facilitated transport via myosin II contraction, local synthesis as a result of messenger ribonucleic acid localization, or F-actin turnover all might contribute. By tracking a photoactivatable, nonpolymerizable actin mutant, we show vectorial transport of G-actin in live migrating endothelial cells (ECs). Mass spectrometric analysis identified Myo1c, an unconventional F-actin-binding motor protein, as a major G-actin-interacting protein. The cargo-binding tail domain of Myo1c interacted with G-actin, and the motor domain was required for the transport. Local microinjection of Myo1c promoted G-actin accumulation and plasma membrane ruffling, and Myo1c knockdown confirmed its contribution to G-actin delivery to the leading edge and for cell motility. In addition, there is no obvious requirement for myosin II contractile-based transport of G-actin in ECs. Thus, Myo1c-facilitated G-actin transport might be a critical node for control of cell polarity and motility.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk