Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Lung Cell Mol Physiol. 2012 Sep;303(5):L439-48. doi: 10.1152/ajplung.00408.2011. Epub 2012 Jul 6.

Glycogen synthase kinase-3β/β-catenin signaling regulates neonatal lung mesenchymal stromal cell myofibroblastic differentiation.

Author information

  • 1Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA.

Abstract

In bronchopulmonary dysplasia (BPD), alveolar septa are thickened with collagen and α-smooth muscle actin-, transforming growth factor (TGF)-β-positive myofibroblasts. We examined the biochemical mechanisms underlying myofibroblastic differentiation, focusing on the role of glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling pathway. In the cytoplasm, β-catenin is phosphorylated on the NH(2) terminus by constitutively active GSK-3β, favoring its degradation. Upon TGF-β stimulation, GSK-3β is phosphorylated and inactivated, allowing β-catenin to translocate to the nucleus, where it activates transcription of genes involved in myofibroblastic differentiation. We examined the role of β-catenin in TGF-β1-induced myofibroblastic differentiation of neonatal lung mesenchymal stromal cells (MSCs) isolated from tracheal aspirates of premature infants with respiratory distress. TGF-β1 increased β-catenin expression and nuclear translocation. Transduction of cells with GSK-3β S9A, a nonphosphorylatable, constitutively active mutant that favors β-catenin degradation, blocked TGF-β1-induced myofibroblastic differentiation. Furthermore, transduction of MSCs with ΔN-catenin, a truncation mutant that cannot be phosphorylated on the NH(2) terminus by GSK-3β and is not degraded, was sufficient for myofibroblastic differentiation. In vivo, hyperoxic exposure of neonatal mice increases expression of β-catenin in α-smooth muscle actin-positive myofibroblasts. Similar changes were found in lungs of infants with BPD. Finally, low-passage unstimulated MSCs from infants developing BPD showed higher phospho-GSK-3β, β-catenin, and α-actin content compared with MSCs from infants not developing this disease, and phospho-GSK-3β and β-catenin each correlated with α-actin content. We conclude that phospho-GSK-3β/β-catenin signaling regulates α-smooth muscle actin expression, a marker of myofibroblast differentiation, in vitro and in vivo. This pathway appears to be activated in lung mesenchymal cells from patients with BPD.

PMID:
22773696
[PubMed - indexed for MEDLINE]
PMCID:
PMC3774493
Free PMC Article

Images from this publication.See all images (8)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk