Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cell Stem Cell. 2012 Jul 6;11(1):50-61. doi: 10.1016/j.stem.2012.04.009.

Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs.

Author information

  • 1State Key Laboratory of Oral Disease and Department of Endodontics, West China School of Stomatology, Sichuan University; Chengdu, Sichuan 610041, China.

Abstract

Human bone marrow mesenchymal stem/stromal cells (MSCs) are multipotent progenitor cells with multilineage differentiation potentials including osteogenesis and adipogenesis. While significant progress has been made in understanding transcriptional controls of MSC fate, little is known about how MSC differentiation is epigenetically regulated. Here we show that the histone demethylases KDM4B and KDM6B play critical roles in osteogenic commitment of MSCs by removing H3K9me3 and H3K27me3. Depletion of KDM4B or KDM6B significantly reduced osteogenic differentiation and increased adipogenic differentiation. Mechanistically, while KDM6B controlled HOX expression by removing H3K27me3, KDM4B promoted DLX expression by removing H3K9me3. Importantly, H3K27me3- and H3K9me3-positive MSCs of bone marrow were significantly elevated in ovariectomized and aging mice in which adipogenesis was highly active. Since histone demethylases are chemically modifiable, KDM4B and KDM6B may present as therapeutic targets for controlling MSC fate choices and lead to clues for new treatment in metabolic bone diseases such as osteoporosis.

Copyright © 2012 Elsevier Inc. All rights reserved.

PMID:
22770241
[PubMed - indexed for MEDLINE]
PMCID:
PMC3392612
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk