Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2012 Jul 4;32(27):9133-42. doi: 10.1523/JNEUROSCI.0996-12.2012.

ALS-associated ataxin 2 polyQ expansions enhance stress-induced caspase 3 activation and increase TDP-43 pathological modifications.

Author information

  • 1Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA.

Abstract

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease caused by the loss of motor neurons. The degenerating motor neurons of ALS patients are characterized by the accumulation of cytoplasmic inclusions containing phosphorylated and truncated forms of the RNA-binding protein TDP-43. Ataxin 2 intermediate-length polyglutamine (polyQ) expansions were recently identified as a risk factor for ALS; however, the mechanism by which they contribute to disease is unknown. Here, we show that intermediate-length ataxin 2 polyQ expansions enhance stress-induced TDP-43 C-terminal cleavage and phosphorylation in human cells. We also connect intermediate-length ataxin 2 polyQ expansions to the stress-dependent activation of multiple caspases, including caspase 3. Caspase activation is upstream of TDP-43 cleavage and phosphorylation since caspase inhibitors block these pathological modifications. Analysis of the accumulation of activated caspase 3 in motor neurons revealed a striking association with ALS cases harboring ataxin 2 polyQ expansions. These findings indicate that activated caspase 3 defines a new pathological feature of ALS with intermediate-length ataxin 2 polyQ expansions. These results provide mechanistic insight into how ataxin 2 intermediate-length polyQ expansions could contribute to ALS--by enhancing stress-induced TDP-43 pathological modifications via caspase activation. Because longer ataxin 2 polyQ expansions are associated with a different disease, spinocerebellar ataxia 2, these findings help explain how different polyQ expansions in the same protein can have distinct cellular consequences, ultimately resulting in different clinical features. Finally, since caspase inhibitors are effective at reducing TDP-43 pathological modifications, this pathway could be pursued as a therapeutic target in ALS.

PMID:
22764223
[PubMed - indexed for MEDLINE]
PMCID:
PMC3418890
Free PMC Article

Images from this publication.See all images (9)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk