Format

Send to:

Choose Destination
See comment in PubMed Commons below
Eur J Neurosci. 2012 Sep;36(6):2839-48. doi: 10.1111/j.1460-9568.2012.08202.x. Epub 2012 Jul 5.

Serotonin transporter inhibition attenuates l-DOPA-induced dyskinesia without compromising l-DOPA efficacy in hemi-parkinsonian rats.

Author information

  • 1Behavioral Neuroscience Program, Department of Psychology, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902-6000, USA.

Abstract

Long-term dopamine replacement therapy with l-DOPA in Parkinson's disease often leads to the development of abnormal involuntary movements known as l-DOPA-induced dyskinesia. Growing evidence suggests that, following dopamine cell loss, serotonin neurons acting as surrogates for dopaminergic processes take up l-DOPA, convert it to dopamine and release it in an unregulated fashion that precipitates dyskinesia. Although most studies have focused on serotonin 5-HT(1) receptor stimulation as an antidyskinetic strategy, targeting the serotonin transporter modulation of dopamine activity has been overlooked. Therefore, in the current study, selective serotonin reuptake inhibitors were tested for their ability to reduce l-DOPA- and apomorphine-induced dyskinesia. In Experiments 1 and 2, hemi-parkinsonian rats were primed with l-DOPA until stable dyskinesia developed. Rats in Experiment 1 were administered the selective serotonin reuptake inhibitors paroxetine, citalopram or fluoxetine, followed by l-DOPA. Abnormal involuntary movements and forepaw adjusting steps were recorded to determine the effects of these compounds on dyskinesia and motor performance, respectively. Brains were collected on the final test day, after which striatal and raphe monoamines were examined via high-performance liquid chromatography. In Experiment 2, dyskinesias were measured after selective serotonin reuptake inhibitors and apomorphine. Serotonin reuptake inhibitors dose-dependently attenuated l-DOPA- but not apomorphine-induced dyskinesia, and preserved l-DOPA efficacy. Neurochemically, serotonin transporter inhibition enhanced striatal and raphe serotonin levels and reduced its turnover, indicating a potential mechanism of action. The present results support targeting serotonin transporters to improve Parkinson's disease treatment and provide further evidence for the role of the serotonin system in l-DOPA's effects.

© 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

PMID:
22762478
[PubMed - indexed for MEDLINE]
PMCID:
PMC3445783
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Write to the Help Desk