Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
PLoS Comput Biol. 2012;8(6):e1002548. doi: 10.1371/journal.pcbi.1002548. Epub 2012 Jun 21.

Potassium starvation in yeast: mechanisms of homeostasis revealed by mathematical modeling.

Author information

  • 1Department of Mathematics and Technology, RheinAhrCampus, University of Applied Sciences, Koblenz, Remagen, Germany.

Abstract

The intrinsic ability of cells to adapt to a wide range of environmental conditions is a fundamental process required for survival. Potassium is the most abundant cation in living cells and is required for essential cellular processes, including the regulation of cell volume, pH and protein synthesis. Yeast cells can grow from low micromolar to molar potassium concentrations and utilize sophisticated control mechanisms to keep the internal potassium concentration in a viable range. We developed a mathematical model for Saccharomyces cerevisiae to explore the complex interplay between biophysical forces and molecular regulation facilitating potassium homeostasis. By using a novel inference method ("the reverse tracking algorithm") we predicted and then verified experimentally that the main regulators under conditions of potassium starvation are proton fluxes responding to changes of potassium concentrations. In contrast to the prevailing view, we show that regulation of the main potassium transport systems (Trk1,2 and Nha1) in the plasma membrane is not sufficient to achieve homeostasis.

PMID:
22737060
[PubMed - indexed for MEDLINE]
PMCID:
PMC3380843
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Public Library of Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk