Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Nematol. 2009 Dec;41(4):281-90.

Evidence for horizontally transferred genes involved in the biosynthesis of vitamin B(1), B(5), and B(7) in Heterodera glycines.

Author information

  • 1University of Illinois, Crop Sciences, Illinois, USA.

Abstract

Heterodera glycines is a nematode that is highly adapted to manipulate and parasitize plant hosts. The molecular players involved in these interactions have only recently begun to be identified. Here, the sequencing of the second stage juvenile transcriptome, followed by a bioinformatic screen for novel genes, identified seven new genes involved in biosynthesis and salvage of vitamins B₁, B₅, and B₇. With no confirmed reports in the literature, each of these biosynthesis pathways is believed to have been lost in multicellular animals. However, eukaryotic-like introns in the genomic sequences of the genes confirmed eukaryotic origin and nematode-specific splice leaders found on five of the cDNAs confirmed their nematode origin. Two of the genes were found to be flanked by known nematode sequences and quantitative polymerase chain reactions on individual nematodes showed similar and consistent amplification between the vitamin B biosynthesis genes and other known H. glycines genes. This further confirmed their presence in the nematode genome. Similarity to bacterial sequences at the amino acid level suggested a prokaryotic ancestry and phylogenetic analysis of the genes supported a likely horizontal gene transfer event, suggesting H. glycines re-appropriated the genes from the prokaryotic kingdom. This finding complements the previous discovery of a vitamin B₆ biosynthesis pathway within the nematode. However, unlike the complete vitamin B₆ pathway, many of these vitamin B pathways appear to be missing the initial enzymes required for full de novo biosynthesis, suggesting that initial substrates in the pathways are obtained exogenously. These partial vitamin B biosynthesis enzymes have recently been identified in other single-celled eukaryotic parasites and on rhizobia symbiosis plasmids, indicating that they may play an important role in host-parasite interactions and survival within the plant environment.

KEYWORDS:

Heterodera glycines; biosynthetic pathways; biotin; horizontal gene transfer; pantothenate; thiamin; vitamin B1; vitamin B5; vitamin B7

PMID:
22736827
[PubMed]
PMCID:
PMC3381462
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for PubMed Central
    Loading ...
    Write to the Help Desk