Display Settings:

Format

Send to:

Choose Destination
Nature. 2012 Aug 9;488(7410):218-21. doi: 10.1038/nature11239.

Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation.

Author information

  • 1Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.

Abstract

The ability to optimize behavioural performance when confronted with continuously evolving environmental demands is a key element of human cognition. The dorsal anterior cingulate cortex (dACC), which lies on the medial surface of the frontal lobes, is important in regulating cognitive control. Hypotheses about its function include guiding reward-based decision making, monitoring for conflict between competing responses and predicting task difficulty. Precise mechanisms of dACC function remain unknown, however, because of the limited number of human neurophysiological studies. Here we use functional imaging and human single-neuron recordings to show that the firing of individual dACC neurons encodes current and recent cognitive load. We demonstrate that the modulation of current dACC activity by previous activity produces a behavioural adaptation that accelerates reactions to cues of similar difficulty to previous ones, and retards reactions to cues of different difficulty. Furthermore, this conflict adaptation, or Gratton effect, is abolished after surgically targeted ablation of the dACC. Our results demonstrate that the dACC provides a continuously updated prediction of expected cognitive demand to optimize future behavioural responses. In situations with stable cognitive demands, this signal promotes efficiency by hastening responses, but in situations with changing demands it engenders accuracy by delaying responses.

Comment in

PMID:
22722841
[PubMed - indexed for MEDLINE]
PMCID:
PMC3416924
Free PMC Article

Images from this publication.See all images (4)Free text

Fig. 1
Fig. 2
Fig. 3
Fig. 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk