Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Nucleic Acids Res. 2012 Aug;40(15):e114. doi: 10.1093/nar/gks543. Epub 2012 Jun 20.

i-cisTarget: an integrative genomics method for the prediction of regulatory features and cis-regulatory modules.

Author information

  • 1TAGC - Inserm U1090 and Aix-Marseille Université, Campus de Luminy, 13288 Marseille, France. carl.herrmann@univ-amu.fr


The field of regulatory genomics today is characterized by the generation of high-throughput data sets that capture genome-wide transcription factor (TF) binding, histone modifications, or DNAseI hypersensitive regions across many cell types and conditions. In this context, a critical question is how to make optimal use of these publicly available datasets when studying transcriptional regulation. Here, we address this question in Drosophila melanogaster for which a large number of high-throughput regulatory datasets are available. We developed i-cisTarget (where the 'i' stands for integrative), for the first time enabling the discovery of different types of enriched 'regulatory features' in a set of co-regulated sequences in one analysis, being either TF motifs or 'in vivo' chromatin features, or combinations thereof. We have validated our approach on 15 co-expressed gene sets, 21 ChIP data sets, 628 curated gene sets and multiple individual case studies, and show that meaningful regulatory features can be confidently discovered; that bona fide enhancers can be identified, both by in vivo events and by TF motifs; and that combinations of in vivo events and TF motifs further increase the performance of enhancer prediction.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk