Enantioselective synthesis of cyclic carbamimidates via a three-component reaction of imines, terminal alkynes, and p-toluenesulfonylisocyanate using a monophosphine gold(I) catalyst()

Chem Sci. 2011 Jul;2(7):1369-1378. doi: 10.1039/C1SC00160D. Epub 2011 May 12.

Abstract

A racemic Au(I)-catalyzed three-component reaction has been developed to prepare cyclic carbamimidates from imines, terminal alkynes, and sulfonylisocyanates. This reaction exploits the carbophilic π-acidity of gold catalysts to first activate an alkyne toward deprotonation and secondly, to activate the internal alkyne generated toward intramolecular O-cyclization. Unlike similar previously reported multicomponent gold-catalyzed reactions, the stereocenter generated during the alkynylation is preserved in the product. This trait was exploited by developing an enantioselective variant, using an unusual trans-1-diphenylphosphino-2-arylsulfamidocyclohexane ligand. Moderate to excellent levels of enantioselectivity were obtained using a variety of N-arylbenzylidene anilines (41-95% ee, 18 examples).