Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):10921-6. doi: 10.1073/pnas.1121236109. Epub 2012 Jun 18.

Wnt/β-catenin and Bmp signals control distinct sets of transcription factors in cardiac progenitor cells.

Author information

  • 1Department of Cancer Research, Max Delbrueck Center for Molecular Medicine, 13125 Berlin, Germany.

Abstract

Progenitor cells of the first and second heart fields depend on cardiac-specific transcription factors for their differentiation. Using conditional mutagenesis of mouse embryos, we define the hierarchy of signaling events that controls the expression of cardiac-specific transcription factors during differentiation of cardiac progenitors at embryonic day 9.0. Wnt/β-catenin and Bmp act downstream of Notch/RBPJ at this developmental stage. Mutation of Axin2, the negative regulator of canonical Wnt signaling, enhances Wnt and Bmp4 signals and suffices to rescue the arrest of cardiac differentiation caused by loss of RBPJ. Using FACS enrichment of cardiac progenitors in RBPJ and RBPJ/Axin2 mutants, embryo cultures in the presence of the Bmp inhibitor Noggin, and by crossing a Bmp4 mutation into the RBPJ/Axin2 mutant background, we show that Wnt and Bmp4 signaling activate specific and nonoverlapping cardiac-specific genes in the cardiac progenitors: Nkx2-5, Isl1 and Baf60c are controlled by Wnt/β-catenin, and Gata4, SRF, and Mef2c are controlled by Bmp signaling. Our study contributes to the understanding of the regulatory hierarchies of cardiac progenitor differentiation and outflow tract development and has implications for understanding and modeling heart development.

PMID:
22711842
[PubMed - indexed for MEDLINE]
PMCID:
PMC3390862
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk