Format

Send to:

Choose Destination
See comment in PubMed Commons below
Chem Biol Interact. 2012 Jul 30;199(1):29-37. doi: 10.1016/j.cbi.2012.06.005. Epub 2012 Jun 15.

Novel molecular mechanisms of antitumor action of dichloroacetate against T cell lymphoma: Implication of altered glucose metabolism, pH homeostasis and cell survival regulation.

Author information

  • 1School of Biotechnology, Banaras Hindu University, Varanasi 221005, India.

Abstract

Pyruvate dehydrogenase kinase (PDK) inhibits pyruvate dehydrogenase (PDH) activity and thus promotes energetic switch from mitochondrial glucose oxidation to cytoplasmic glycolysis in cancerous cells (a phenomenon known as the 'Warburg effect') for their energy need, which facilitates the cancer progression by resisting induction of apoptosis and promoting tumor metastasis. Thus, in the present investigation, we explored the molecular mechanisms of the tumoricidal action of dichloroacetate (DCA), a pyruvate dehydrogenase kinase inhibitor, on cells of a murine T cell lymphoma, designated as Dalton's lymphoma (DL). In vitro treatment of tumor cells with DCA inhibited their survival accompanied by a modulation of the biophysical composition of tumor-conditioned medium with respect to pH, glucose and lactate. DCA treatment also altered expression of HIF1-α and pH regulators: VATPase and MCT1 and production of cytokines: IL-10, IL-6 and IFN-γ. Moreover, we also observed an alteration in the expression of other apoptosis and cell survival regulatory molecules: PUMA, GLUT1, Bcl2, p53, CAD, caspase-3 and HSP70. The study discusses the role of novel molecular mechanisms underlying DCA-dependent inhibition of tumor cell survival. This study shows for the first time that DCA-dependent alteration of tumor cell survival involves altered pH homeostasis and glucose metabolism. Thus, these findings will provide a new insight for therapeutic applications of DCA as a novel antineoplastic agent against T cell lymphoma.

Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

PMID:
22705712
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk