Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Agric Food Chem. 2012 Sep 12;60(36):8924-9. doi: 10.1021/jf301147n. Epub 2012 Jun 29.

Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of α-amylase and α-glucosidase activity.

Author information

  • 1Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, USA.

Abstract

This study evaluated the inhibitory effects of plant-based extracts (grape seed, green tea, and white tea) and their constituent flavan-3-ol monomers (catechins) on α-amylase and α-glucosidase activity, two key glucosidases required for starch digestion in humans. To evaluate the relative potency of extracts and catechins, their concentrations required for 50 and 90% inhibition of enzyme activity were determined and compared to the widely used pharmacological glucosidase inhibitor, acarbose. Maximum enzyme inhibition was used to assess relative inhibitory efficacy. Results showed that grape seed extract strongly inhibited both α-amylase and α-glucosidase activity, with equal and much higher potency, respectively, than acarbose. Whereas tea extracts and catechin 3-gallates were less effective inhibitors of α-amylase, they were potent inhibitors of α-glucosidase. Nongallated catechins were ineffective. The data show that plant extracts containing catechin 3-gallates, in particular epigallocatechin gallate, are potent inhibitors of α-glucosidase activity and suggest that procyanidins in grape seed extract strongly inhibit α-amylase activity.

PMID:
22697360
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk