Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10450-5. doi: 10.1073/pnas.1200067109. Epub 2012 Jun 11.

Cdc28 kinase activity regulates the basal transcription machinery at a subset of genes.

Author information

  • 1Department of Molecular Biology, Institute of Microbiology, and Centre for Molecular Biology and Neuroscience, Oslo University Hospital, Sognsvannsveien 20, NO-0027 Oslo, Norway.

Abstract

The cyclin-dependent kinase Cdc28 is the master regulator of the cell cycle in Saccharomyces cerevisiae. Cdc28 initiates the cell cycle by activating cell-cycle-specific transcription factors that switch on a transcriptional program during late G1 phase. Cdc28 also has a cell-cycle-independent, direct function in regulating basal transcription, which does not require its catalytic activity. However, the exact role of Cdc28 in basal transcription remains poorly understood, and a function for its kinase activity has not been fully explored. Here we show that the catalytic activity of Cdc28 is important for basal transcription. Using a chemical-genetic screen for mutants that specifically require the kinase activity of Cdc28 for viability, we identified a plethora of basal transcription factors. In particular, CDC28 interacts genetically with genes encoding kinases that phosphorylate the C-terminal domain of RNA polymerase II, such as KIN28. ChIP followed by high-throughput sequencing (ChIP-seq) revealed that Cdc28 localizes to at least 200 genes, primarily with functions in cellular homeostasis, such as the plasma membrane proton pump PMA1. Transcription of PMA1 peaks early in the cell cycle, even though the promoter sequences of PMA1 (as well as the other Cdc28-enriched ORFs) lack cell-cycle elements, and PMA1 does not recruit Swi4/6-dependent cell-cycle box-binding factor/MluI cell-cycle box binding factor complexes. Finally, we found that recruitment of Cdc28 and Kin28 to PMA1 is mutually dependent and that the activity of both kinases is required for full phosphorylation of C-terminal domain-Ser5, for efficient transcription, and for mRNA capping. Our results reveal a mechanism of cell-cycle-dependent regulation of basal transcription.

PMID:
22689984
[PubMed - indexed for MEDLINE]
PMCID:
PMC3387082
Free PMC Article

Images from this publication.See all images (5)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk