Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biotechnol Bioeng. 2012 Dec;109(12):3133-42. doi: 10.1002/bit.24574. Epub 2012 Jun 20.

Global regulator engineering significantly improved Escherichia coli tolerances toward inhibitors of lignocellulosic hydrolysates.

Author information

  • 1National Engineering Laboratory for Industrial Enzymes, Department of Chemical Engineering, Tsinghua University, 1 Tsinghua Garden Road, Beijing 100084, China.

Abstract

Lignocellulosic biomass is regarded as the most viable source of feedstock for industrial biorefinery, but the harmful inhibitors generated from the indispensable pretreatments prior to fermentation remain a daunting technical hurdle. Using an exogenous regulator, irrE, from the radiation-resistant Deinococcus radiodurans, we previously showed that a novel global regulator engineering (GRE) approach significantly enhanced tolerances of Escherichia coli to alcohol and acetate stresses. In this work, an irrE library was subjected to selection under various stresses of furfural, a typical hydrolysate inhibitor. Three furfural tolerant irrE mutants including F1-37 and F2-1 were successfully obtained. The cells containing these mutants reached OD(600) levels of 4- to 16-fold of that for the pMD18T cells in growth assay under 0.2% (v/v) furfural stress. The cells containing irrE F1-37 and F2-1 also showed considerably reduced intracellular oxygen species (ROS) levels under furfural stress. Moreover, these two irrE mutants were subsequently found to confer significant cross tolerances to two other most common inhibitors, 5-hydroxymethyl-2-furaldehyde (HMF), vanillin, as well as real lignocellulosic hydrolysates. When evaluated in Luria-Bertani (LB) medium supplemented with corn stover cellulosic hydrolysate (prepared with a solid loading of 30%), the cells containing the mutants exhibited lag phases markedly shortened by 24-44 h in comparison with the control cells. This work thus presents a promising step forward to resolve the inhibitor problem for E. coli. From the view of synthetic biology, irrE can be considered as an evolvable "part" for various stresses. Furthermore, this GRE approach can be extended to exploit other exogenous global regulators from extremophiles, and the native counterparts in E. coli, for eliciting industrially useful phenotypes.

Copyright © 2012 Wiley Periodicals, Inc.

PMID:
22684885
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Write to the Help Desk