Send to

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2012 Sep;62(3):1939-46. doi: 10.1016/j.neuroimage.2012.05.080. Epub 2012 Jun 6.

Whole brain, high resolution spin-echo resting state fMRI using PINS multiplexing at 7 T.

Author information

  • 1Erwin L. Hahn Institute for Magnetic Resonance Imaging, UNESCO-Weltkulturerbe Zollverein, Leitstand Kokerei Zollverein, Arendahls Wiese 199, D-45141 Essen, Germany.


This article demonstrates the application of spin-echo EPI for resting state fMRI at 7 T. A short repetition time of 1860 ms was made possible by the use of slice multiplexing which permitted whole brain coverage at high spatial resolution (84 slices of 1.6 mm thickness). Radiofrequency power deposition was kept within regulatory limits by use of the power independent of number of slices (PINS) technique. A high in-plane spatial resolution of 1.5 mm was obtained, while image distortion was ameliorated by the use of in-plane parallel imaging techniques. Data from six subjects were obtained with a measurement time of just over 15 min per subject. A group level independent component (IC) analysis revealed 24 non-artefactual resting state networks, including those commonly found in standard acquisitions, as well as plausible networks for a broad range of regions. Signal was measured from regions commonly rendered inaccessible due to signal voids in gradient echo acquisitions. Dual regression was used to obtain spatial IC maps at the single subject level revealing exquisite localisation to grey matter that is consistent with a high degree of T(2)-weighting in the acquisition sequence. This technique hence holds great promise for both resting state and activation studies at 7 T.

Copyright © 2012 Elsevier Inc. All rights reserved.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk