Format

Send to:

Choose Destination
See comment in PubMed Commons below
Front Neuroanat. 2012 Jun 5;6:20. doi: 10.3389/fnana.2012.00020. eCollection 2012.

Contribution of pheromones processed by the main olfactory system to mate recognition in female mammals.

Author information

  • Department of Biology, Boston University, Boston MA, USA.

Abstract

Until recently it was widely believed that the ability of female mammals (with the likely exception of women) to identify and seek out a male breeding partner relied on the detection of non-volatile male pheromones by the female's vomeronasal organ (VNO) and their subsequent processing by a neural circuit that includes the accessory olfactory bulb (AOB), vomeronasal amygdala, and hypothalamus. Emperical data are reviewed in this paper that demonstrate the detection of volatile pheromones by the main olfactory epithelium (MOE) of female mice which, in turn, leads to the activation of a population of glomeruli and abutting mitral cells in the main olfactory bulb (MOB). Anatomical results along with functional neuroanatomical data demonstrate that some of these MOB mitral cells project to the vomeronasal amygdala. These particular MOB mitral cells were selectively activated (i.e., expressed Fos protein) by exposure to male as opposed to female urinary volatiles. A similar selectivity to opposite sex urinary volatiles was also seen in mitral cells of the AOB of female mice. Behavioral data from female mouse, ferret, and human are reviewed that implicate the main olfactory system, in some cases interacting with the accessory olfactory system, in mate recognition.

KEYWORDS:

ferret; human; hypothalamus; mouse; vomeronasal organ

PMID:
22679420
[PubMed]
PMCID:
PMC3367429
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Frontiers Media SA Icon for PubMed Central
    Loading ...
    Write to the Help Desk