Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
FEMS Immunol Med Microbiol. 2012 Nov;66(2):157-65. doi: 10.1111/j.1574-695X.2012.00996.x. Epub 2012 Jun 21.

Borrelia burgdorferi malQ mutants utilize disaccharides and traverse the enzootic cycle.

Author information

  • 1Division of Biological Sciences, The University of Montana, Missoula, MT 59812-4824, USA.

Abstract

Borrelia burgdorferi, the causative agent of Lyme disease, cycles in nature between a vertebrate host and a tick vector. We demonstrate that B. burgdorferi can utilize several sugars that may be available during persistence in the tick, including trehalose, N-acetylglucosamine (GlcNAc), and chitobiose. The spirochete grows to a higher cell density in trehalose, which is found in tick hemolymph, than in maltose; these two disaccharides differ only in the glycosidic linkage between the glucose monomers. Additionally, B. burgdorferi grows to a higher density in GlcNAc than in the GlcNAc dimer chitobiose, both of which may be available during tick molting. We have also investigated the role of malQ (bb0166), which encodes an amylomaltase, in sugar utilization during the enzootic cycle. In other bacteria, MalQ is involved in utilizing maltodextrins and trehalose, but we show that, unexpectedly, it is not needed for B. burgdorferi to grow in vitro on any of the sugars assayed. In addition, infection of mice by needle inoculation or tick bite, as well as acquisition and maintenance of the spirochete in the tick vector, does not require MalQ.

© 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

PMID:
22672337
[PubMed - indexed for MEDLINE]
PMCID:
PMC3465622
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Blackwell Publishing Icon for PubMed Central
    Loading ...
    Write to the Help Desk