Display Settings:

Format

Send to:

Choose Destination
J Vis Exp. 2012 May 18;(63):e3837. doi: 10.3791/3837.

Local and global methods of assessing thermal nociception in Drosophila larvae.

Author information

  • 1Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, USA.

Abstract

In this article, we demonstrate assays to study thermal nociception in Drosophila larvae. One assay involves spatially-restricted (local) stimulation of thermal nociceptors while the second involves a wholesale (global) activation of most or all such neurons. Together, these techniques allow visualization and quantification of the behavioral functions of Drosophila nociceptive sensory neurons. The Drosophila larva is an established model system to study thermal nociception, a sensory response to potentially harmful temperatures that is evolutionarily conserved across species. The advantages of Drosophila for such studies are the relative simplicity of its nervous system and the sophistication of the genetic techniques that can be used to dissect the molecular basis of the underlying biology In Drosophila, as in all metazoans, the response to noxious thermal stimuli generally involves a "nocifensive" aversive withdrawal to the presented stimulus. Such stimuli are detected through free nerve endings or nociceptors and the amplitude of the organismal response depends on the number of nociceptors receiving the noxious stimulus. In Drosophila, it is the class IV dendritic arborization sensory neurons that detect noxious thermal and mechanical stimuli in addition to their recently discovered role as photoreceptors. These neurons, which have been very well studied at the developmental level, arborize over the barrier epidermal sheet and make contacts with nearly all epidermal cells. The single axon of each class IV neuron projects into the ventral nerve cord of the central nervous system where they may connect to second-order neurons that project to the brain. Under baseline conditions, nociceptive sensory neurons will not fire until a relatively high threshold is reached. The assays described here allow the investigator to quantify baseline behavioral responses or, presumably, the sensitization that ensues following tissue damage. Each assay provokes distinct but related locomotory behavioral responses to noxious thermal stimuli and permits the researcher to visualize and quantify various aspects of thermal nociception in Drosophila larvae. The assays can be applied to larvae of desired genotypes or to larvae raised under different environmental conditions that might impact nociception. Since thermal nociception is conserved across species, the findings gleaned from genetic dissection in Drosophila will likely inform our understanding of thermal nociception in other species, including vertebrates.

PMID:
22643884
[PubMed - indexed for MEDLINE]
PMCID:
PMC3466948
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for MyJove Corporation Icon for PubMed Central
    Loading ...
    Write to the Help Desk