Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Physiol Genomics. 2012 Jul 15;44(14):717-27. doi: 10.1152/physiolgenomics.00010.2012. Epub 2012 May 29.

Kidney proteome changes provide evidence for a dynamic metabolism and regional redistribution of plasma proteins during torpor-arousal cycles of hibernation.

Author information

  • 1Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO 80045, USA.

Abstract

Hibernating ground squirrels maintain homeostasis despite extreme physiological challenges. In winter, these circannual hibernators fast for months while cycling between prolonged periods of low blood flow and body temperature, known as torpor, and short interbout arousals (IBA), where more typical mammalian parameters are rapidly restored. Here we examined the kidney proteome for changes that support the dramatically different physiological demands of the hibernator's year. We identified proteins in 150 two-dimensional gel spots that altered by at least 1.5-fold using liquid chromatography and tandem mass spectrometry. These data successfully classified individuals by physiological state and revealed three dynamic patterns of relative protein abundance that dominated the hibernating kidney: 1) a large group of proteins generally involved with capturing and storing energy were most abundant in summer; 2) a select subset of these also increased during each arousal from torpor; and 3) 14 spots increased in torpor and early arousal were enriched for plasma proteins that enter cells via the endocytic pathway. Immunohistochemistry identified α(2)-macroglobulin and albumin in kidney blood vessels during late torpor and early arousal; both exhibited regional heterogeneity consistent with highly localized control of blood flow in the glomeruli. Furthermore, albumin, but not α(2)-macroglobulin, was detected in the proximal tubules during torpor and early arousal but not in IBA or summer animals. Taken together, our findings indicate that normal glomerular filtration barriers remain intact throughout torpor-arousal cycles but endocytosis, and hence renal function, is compromised at low body temperature during torpor and then recovers with rewarming during arousal.

PMID:
22643061
[PubMed - indexed for MEDLINE]
PMCID:
PMC3426438
Free PMC Article

Images from this publication.See all images (7)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk