Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2012 Jul 13;287(29):24739-53. doi: 10.1074/jbc.M112.340216. Epub 2012 May 25.

Smooth muscle-specific expression of calcium-independent phospholipase A2β (iPLA2β) participates in the initiation and early progression of vascular inflammation and neointima formation.

Author information

  • 1Department of Internal Medicine, University of Kentucky School of Medicine, Lexington, Kentucky 40536, USA.


Whether group VIA phospholipase A(2) (iPLA(2)β) is involved in vascular inflammation and neointima formation is largely unknown. Here, we report that iPLA(2)β expression increases in the vascular tunica media upon carotid artery ligation and that neointima formation is suppressed by genetic deletion of iPLA(2)β or by inhibiting its activity or expression via perivascular delivery of bromoenol lactone or of antisense oligonucleotides, respectively. To investigate whether smooth muscle-specific iPLA(2)β is involved in neointima formation, we generated transgenic mice in which iPLA(2)β is expressed specifically in smooth muscle cells and demonstrate that smooth muscle-specific expression of iPLA(2)β exacerbates ligation-induced neointima formation and enhanced both production of proinflammatory cytokines and vascular infiltration by macrophages. With cultured vascular smooth muscle cell, angiotensin II, arachidonic acid, and TNF-α markedly induce increased expression of IL-6 and TNF-α mRNAs, all of which were suppressed by inhibiting iPLA(2)β activity or expression with bromoenol lactone, antisense oligonucleotides, and genetic deletion, respectively. Similar suppression also results from genetic deletion of 12/15-lipoxygenase or inhibiting its activity with nordihydroguaiaretic acid or luteolin. Expression of iPLA(2)β protein in cultured vascular smooth muscle cells was found to depend on the phenotypic state and to rise upon incubation with TNF-α. Our studies thus illustrate that smooth muscle cell-specific iPLA(2)β participates in the initiation and early progression of vascular inflammation and neointima formation and suggest that iPLA(2)β may represent a novel therapeutic target for preventing cardiovascular diseases.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk