Display Settings:

Format

Send to:

Choose Destination
Clin Med Res. 2012 Aug;10(3):106-21. doi: 10.3121/cmr.2012.1047. Epub 2012 May 25.

Towards automatic diabetes case detection and ABCS protocol compliance assessment.

Author information

  • 1Centers for Disease Control and Prevention, 1600 Clifton Rd, Mail Stop E76, Atlanta, GA 30333, USA. nmishra@cdc.gov

Abstract

OBJECTIVE:

According to the American Diabetes Association, the implementation of the standards of care for diabetes has been suboptimal in most clinical settings. Diabetes is a disease that had a total estimated cost of $174 billion in 2007 for an estimated diabetes-affected population of 17.5 million in the United States. With the advent of electronic medical records (EMR), tools to analyze data residing in the EMR for healthcare surveillance can help reduce the burdens experienced today. This study was primarily designed to evaluate the efficacy of employing clinical natural language processing to analyze discharge summaries for evidence indicating a presence of diabetes, as well as to assess diabetes protocol compliance and high risk factors.

METHODS:

Three sets of algorithms were developed to analyze discharge summaries for: (1) identification of diabetes, (2) protocol compliance, and (3) identification of high risk factors. The algorithms utilize a common natural language processing framework that extracts relevant discourse evidence from the medical text. Evidence utilized in one or more of the algorithms include assertion of the disease and associated findings in medical text, as well as numerical clinical measurements and prescribed medications.

RESULTS:

The diabetes classifier was successful at classifying reports for the presence and absence of diabetes. Evaluated against 444 discharge summaries, the classifier's performance included macro and micro F-scores of 0.9698 and 0.9865, respectively. Furthermore, the protocol compliance and high risk factor classifiers showed promising results, with most F-measures exceeding 0.9.

CONCLUSIONS:

The presented approach accurately identified diabetes in medical discharge summaries and showed promise with regards to assessment of protocol compliance and high risk factors. Utilizing free-text analytic techniques on medical text can complement clinical-public health decision support by identifying cases and high risk factors.

PMID:
22634542
[PubMed - indexed for MEDLINE]
PMCID:
PMC3421414
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1
Figure 2
Figure 3
Figure 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk