A high-affinity and specific carrier-mediated mechanism for uptake of thiamine pyrophosphate by human colonic epithelial cells

Am J Physiol Gastrointest Liver Physiol. 2012 Aug 1;303(3):G389-95. doi: 10.1152/ajpgi.00151.2012. Epub 2012 May 24.

Abstract

All mammals require exogenous sources of thiamine (vitamin B1), as they lack the ability to synthesize the vitamin. These sources are dietary and bacterial (the latter is in reference to the vitamin, which is synthesized by the normal microflora of the large intestine). Bacterially generated thiamine exists in the free, as well as the pyrophosphorylated [thiamine pyrophosphate (TPP)], form. With no (or very little) phosphatase activity in the colon, we hypothesized that the bacterially generated TPP can also be taken up by colonocytes. To test this hypothesis, we examined [(3)H]TPP uptake in the human-derived, nontransformed colonic epithelial NCM460 cells and purified apical membrane vesicles isolated from the colon of human organ donors. Uptake of TPP by NCM460 cells occurred without metabolic alterations in the transported substrate and 1) was pH- and Na(+)-independent, but energy-dependent, 2) was saturable as a function of concentration (apparent K(m) = 0.157 ± 0.028 μM), 3) was highly specific for TPP and not affected by free thiamine (or its analogs) or by thiamine monophosphate and unrelated folate derivatives, 4) was adaptively regulated by extracellular substrate (TPP) level via what appears to be a transcriptionally mediated mechanism(s), and 5) appeared to be influenced by an intracellular Ca(2+)/calmodulin-mediated regulatory pathway. These findings suggest the involvement of a carrier-mediated mechanism for TPP uptake by colonic NCM460 cells, which was further confirmed by results from studies of native human colonic apical membrane vesicles. The results also suggest that the bacterially synthesized TPP in the large intestine is bioavailable and may contribute to overall body homeostasis of vitamin B1 and, especially, to the cellular nutrition of the local colonocytes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biological Transport / physiology
  • Calmodulin / metabolism
  • Cell Line
  • Colon / cytology
  • Colon / metabolism*
  • Epithelial Cells / metabolism*
  • Humans
  • Hydrogen-Ion Concentration
  • Intestinal Mucosa / metabolism
  • Thiamine / metabolism
  • Thiamine Pyrophosphate / metabolism*
  • Tissue Donors

Substances

  • Calmodulin
  • Thiamine Pyrophosphate
  • Thiamine